Design and Implementation of a Robot Force and Motion Server

نویسنده

  • Hong Zhang
چکیده

A robot manipulator is a force and motion server for a robot. The robot, interpreting sensor information in terms of a world model and a task plan, issues instructions to the manipulator to carry out tasks. The control of a manipulator first involves motion trajectory generation needed when the manipulator is instructed to move to desired positions. The procedure of generating the trajectory must be flexible and efficient. When the manipulator comes into contact with the environment such as during assembly, it must be able to comply with the geometric constraints presented by the contact in order to perform tasks successfully. The control strategies for motion and compliance are executed in real time by the control computer, which must be powerful enough to carry out the necessary computations. This thesis first presents an efficient method for manipulator motion planning. Two fundamental modes of motion, Cartesian and joint, are considered and transition between motion segments is uniformly treated to obtain an efficient and simple system. A modified hybrid control method for manipulator compliance is then proposed and implemented. The method overcomes the problems existing in previous approaches such as stiffness control and hybrid control. Finally, a controller architecture is studied to distribute computations into a number of processors to satisfy the computational requirement in a cost-effective manner. The implementation using Intel's single board computers is also discussed. Finally, to demonstrate the system, the motion trajectory. and the modified forced/motion control scheme are implemented on the controller and a PUMA 260 manipulator controlled from a multi-user VAX/Unix system through an Ethernet interface. Comments University of Pennsylvania Department of Computer and Information Science Technical Report No. MSCIS-86-73. This technical report is available at ScholarlyCommons: http://repository.upenn.edu/cis_reports/672 DESIGN AND IMPLEMENTATION OF A ROBOT FORCE AND MOTION SERVER Hong Zhang MS-CIS-8 6-73 GRASP LAB 77 Department Of Computer and Information Science Moore School University of Pennsylvania Philadelphia, PA 191 04 September 1986 Acknowledgements: This research was supported in part by DARPA grants NO001 4-85-K-0018 and NO001 4-85-K-0807, NSF grants DMC-8411879, DMC-85-12838, DCR-86-07156, DCR8501482, MCS8219196-CER, MCS-82-07294,l R01-HL-29985-01, U.S. Army grants DAA6-29-84-K-0061, DAAB07-84-K-FO77, U.S. Air Force grant 82-NM-299, Al Center grants NSF-MCS-83-05221, U.S. Army Research office grant ARO-DAA29-84-9-0027, Lord Corporation, RCA and Digital Equipment Corporation. DESIGN AND IMPLEMENTATION OF A ROBOT FORCE AND MOTION SERVER

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Hybrid Motion Force Control Algorithm for Robot Manipulators

In this paper we present a robust hybrid motion/force controller for rigid robot manipulators. The main contribution of this paper is that the proposed hybrid control system is able to accomplish motion objectives in free directions and force objectives in constrained directions under parametric uncertainty both in robot dynamics and stiffness constraint constant. Also, the given scheme is prov...

متن کامل

Robot Motion Vision Part II: Implementation

The idea of Fixation introduced a direct method for general recovery of shape and motion from images without using either feature correspondence or optical flow [1,2]. There are some parameters which have important effects on the performance of fixation method. However, the theory of fixation does not say anything about the autonomous and correct choice of those parameters. This paper presents ...

متن کامل

Conceptual Design of a Gait Rehabilitation Robot

Gait rehabilitation using body weight support on a treadmill is a recommended rehabilitation technique for neurological injuries, such as spinal cord injury. In this paper, a new robotic orthosis is presented for treadmill training. In the presented design the criteria such as low inertia of robot components, backdrivability, high safety and degrees of freedom based on human walking are conside...

متن کامل

Non-Singular Terminal Sliding Mode Control of a Nonholonomic Wheeled Mobile Robots Using Fuzzy Based Tyre Force Estimator

This paper, proposes a methodology to implement a suitable nonsingular terminal sliding mode controller associated with the output feedback control to achieve a successful trajectory tracking of a non-holonomic wheeled mobile robot in presence of longitudinal and lateral slip accompanied. This implementation offers a relatively faster and high precision tracking performance. We investigate this...

متن کامل

Manipulation Control of a Flexible Space Free Flying Robot Using Fuzzy Tuning Approach

Cooperative object manipulation control of rigid-flexible multi-body systems in space is studied in this paper. During such tasks, flexible members like solar panels may get vibrated that in turn may lead to some oscillatory disturbing forces on other subsystems, and consequently produces error in the motion of the end-effectors of the cooperative manipulating arms. Therefore, to design and dev...

متن کامل

Flexible Foot/Ankle Based on PKM with Force/Torque Sensor for Humanoid Robot

This paper describes the development of a novel humanoid robot foot/ankle based on an orientation Parallel Kinematic Mechanism for intelligent and flexible control. With three identical Universal-Prismatic-Spherical prismatic-actuated limbs and a central Universal-Revolute passive limb, the PKM can perform three degrees of freedom rotation motions. In order to enable the humanoid robot safely t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014